
University of St Andrews

School of Computer Science

Scientific Data Management System for

Powder X-Ray Diffraction

Anke Shi

Matriculation Number: 160025235

MSc. Software Engineering

14 August 2017

Abstract

In this time of Information Technology, almost every detail of our lives has been taken

over by web applications, still, some traditional manual booking systems are still in use.

As demand increases, it is a historical necessity that intelligent and efficient web-based

management tools replace these old-fashioned system. The project undertaken takes

Powder X-Ray Diffraction (PXRD) as a real use-case to develop an online booking

application. This dissertation describes the methodology, requirement, design,

implementation and evaluation of this application. Based on the needs of PXRD, this

application provides some basic but vital functionalities to transform the manual

process into an electronic one.

Declaration

I hereby certify that this dissertation, which is approximately <N> words in length, has

been composed by me, that it is the record of work carried out by me and that it has not

been submitted in any previous application for a higher degree. This project was

conducted by me at The University of St Andrews from 05/2017 to 08/2017 towards

fulfilment of the requirements of the University of St Andrews for the degree of MSc

under the supervision of Tom Kelsey and Shyam Reyal.

In submitting this project report to the University of St Andrews, I give permission for

it to be made available for use in accordance with the regulations of the University

Library. I also give permission for the title and abstract to be published and for copies

of the report to be made and supplied at cost to any bona fide library or research worker,

and to be made available on the World Wide Web. I retain the copyright in this work.

Date: 14/08/2017 Signature:

Acknowledgements

I would like to express my sincere gratitude to my supervisors Tom Kelsey and Shyam

Reyal to offer this project, the kind support and guidance. I would also like to thank

Simone Conte for his generous help.

Special thanks to my parents and friends for their love and support. Thanks to all the

people I met this year. It is my pleasure to meet you!

Contents

Abstract .. 2

Declaration ... 3

Acknowledgements .. 4

List of figures: .. 8

List of Acronyms.. 9

Chapter 1 Introduction ... 10

1.1 Background .. 10

1.1.1 A brief overview of current systems ... 10

1.1.2 The NOMAD system .. 10

1.2 Objectives .. 10

1.2.1 Primary objectives .. 11

1.2.2. Secondary Objectives ... 11

1.2.3 Tertiary Objectives .. 11

1.3 Proposed solution and contributions .. 11

1.4 Ethical considerations .. 12

1.5 Report outline... 12

Chapter 2 Context survey... 13

2.1 Booking systems .. 13

2.1.1 Introduction ... 13

2.1.2 Existing booking system analysis ... 13

2.2 The school of Chemistry at University of St Andrews 15

Chapter 3 Methodology and Infrastructure .. 16

3.1 Requirements engineering ... 16

3.2 Iterative development... 16

3.3 Version Control .. 17

3.4 JavaEE Architecture ... 18

3.5 Project Management .. 19

3.5.1 Requirements Management .. 19

3.5.2 Collaboration... 20

Chapter 4 Requirement .. 21

4.1 Universal requirements .. 21

4.2 Powder X-Ray Diffraction (PXRD) ... 21

4.2.1 Functional requirements.. 22

4.2.2 Non-functional requirements .. 26

4.3 Mass Spectrometry (MS) ... 26

4.4 Solid-State NMR (SS-NMR) ... 27

4.5 X-Ray Crystallography .. 27

4.6 Comparison of requirements .. 27

Chapter 5 Design.. 29

5.1 Use case diagram ... 29

5.1.1 Standard user ... 29

5.1.2 Admin user .. 32

5.2 Database design ... 39

5.3 Component design ... 41

5.4 Interface design .. 42

5.5 Design pattern and structure .. 45

Chapter 6 Implementation.. 46

6.1 Introduction .. 46

6.2 Tools, languages and frameworks .. 46

6.2.1 UI layer ... 46

6.2.2 Logic Layer ... 47

6.2.3 Persistence Layer .. 47

6.2.4 Tools .. 47

6.3 NOMAD adaptation ... 48

6.4 One-button booking ... 48

6.5 Calendar booking ... 49

6.6 Asset-booking .. 53

Chapter 7 Evaluation.. 57

7.1 User testing and feedback .. 57

7.2 Analysis of Feedback ... 58

Chapter 8 Conclusion and future work .. 60

8.1 Conclusion ... 60

8.2 Critical appraisal and evaluation of objectives .. 60

8.3 Known issues & Limitations ... 61

8.3 Future work .. 62

Bibliography .. 64

Appendix A – Ethics .. 66

Appendix B - Raw requirements from each service .. 69

List of figures:

Figure 1 Agile methodology .. 17

Figure 2 Changelog .. 18

Figure 3 Standard user - use case diagram... 30

Figure 4 Admin user- system management use case diagram 33

Figure 5 Admin user- Asset-related use case diagram ... 35

Figure 6 Admin user- Calendar-related use case diagram ... 36

Figure 7 Admin user- Onebutton-related use case diagram ... 38

Figure 8 Whole database ER diagram.. 40

Figure 9 PXRD booking ER diagram .. 41

Figure 10 Component diagram .. 42

Figure 11 Asset booking interface ... 43

Figure 12 Calendar booking interface.. 44

Figure 13 Asset machine management interface ... 44

Figure 14 Asset booking group report interface .. 45

Figure 15 “add-button” and “delete-button” .. 50

Figure 16 Fullcalendar weekly scheduler .. 51

Figure 17 Alert ... 53

Figure 18 Date picker... 55

Figure 19 Date picker (calendar way) .. 55

Figure 20 Drop down selection .. 56

Figure 21 Tomcat time zone problem .. 62

List of Acronyms

One-button booking: One-button booking mode add booking by one button

Calendar booking: Calendar booking mode make booking by selecting form calendar

Asset-booking: Asset-booking mode needs the disc name, group and user name, range,

and duration information

PXRD: Powder X-Ray Diffraction

MS: Mass Spectrometry

SS: Solid State NMR

Chapter 1 Introduction

1.1 Background

1.1.1 A brief overview of current systems

There are more than 20 different techniques supported by the School of Chemistry at

the University of St Andrews. Among these, Powder X-Ray Diffraction (PXRD), Mass

Spectrometry (MS), Solid State NMR (SS) and X-Ray Crystallography use a paper-

based manual booking system as their reservation mechanism, while NOMAD is used

by solution-state NMR spectrometry. The aim of this project is to provide the services

of the NOMAD system, currently limited to NMR, to other techniques across the

School of Chemistry.

There are 6 different working machines for Powder X-Ray diffraction to assist a number

of research groups with material identification and other analysis. PXRD takes three

different booking methods to arrange the experiment – Asset, Calendar and One-button,

as named by the developers. They are varied in terms of operation modes and the

booking duration that users require. Asset-booking takes the disc name, group and user

name, range, and duration on the booking sheets (Appendix B). By the machine

limitation, the administrator examines the viability of booking manually. The calendar-

booking needs the user name and group name details for the required time periods. The

one-button booking mode is activated with user details just before using the machine.

1.1.2 The NOMAD system

NMR Online Management And Datastore (NOMAD) system was created in 2012 to

manage Nuclear Magnetic Resonance (NMR) data in collaboration between the

Schools of Chemistry and Computer Science. It provides the experiment booking,

tracking machine and experiment status, the archival, storage, retrieval and

manipulation of NMR spectrum data and the generation of financial reports for over

600 users. By the introduction of NOMAD, the old paper based booking system was

replaced with an online service.

1.2 Objectives

1.2.1 Primary objectives

 General requirement gathering and elicitation from multiple departments in

chemistry, including Powder X-Ray diffraction

 The generic model design and identification of differences between different

machineries

 Software implementation for calendar and one-button booking modes in PXRD

 Client’s and users’ evaluation of PXRD booking system

1.2.2. Secondary Objectives

 Software implementation for assets-booking mode

 Adapting calendar and one-button booking modes to other machineries

 Evaluation of booking system for other machineries

1.2.3 Tertiary Objectives

 UX/UI analysis and implementation

 Investigating booking machinery using mobile message bots

1.3 Proposed solution and contributions

This dissertation aims to solve the practical need of actual clients by using standard

software engineering methodologies as practiced in the industry. Considering the needs

of services and software quality, a Web application based on NOMAD was proposed to

manage reservation and data for Powder X-Ray Diffraction with the following

functions:

 Machine booking for standard users and admin users considering usage

limitation

 Booking and resource management

 Data collection, i.e. getting group usage reports

The project makes the following contributions:

 System provides services with high accessibility and meets the need for

concurrency. Users could break the constraints of time and space.

 Administrator adds new machines and updates machine settings easily with

visualized operations.

 The scientific counting method eliminates the manual calculation.

 NOMAD team could take over the maintenance of software and database.

1.4 Ethical considerations

In this project, there is no sensitive data collected from human subjects during the

project requirements phase, nor when obtaining feedback about the artifact. All data

collection is performed under the approval code CS12476. The preliminary ethics self-

assessment form and the artifact evaluation form can be found at Appendix A.

1.5 Report outline

This report structure follows the entire software development life cycle. Firstly, it

introduces the current booking schema and the objectives of this project (Chapter 1).

Then the context survey (Chapter 2) and methodology (Chapter 3) introduces the

background from business and technical viewpoints. Chapter 4 shows the result

generated from the requirement engineering process. Chapters 5 and 6 use examples to

explain the design and implementation of the final system. Chapter 7 gives the

evaluations from users. Finally, Chapter 8 sums up the work done as a conclusion, and

states possible future work.

 Chapter 2 Context survey

2.1 Booking systems

2.1.1 Introduction

If we want to travel for a while, a room needs to be booked to sleep; if we want to go

to a popular restaurant, a table needs to be booked; if we want to use a public computer

or a machine, a time slot needs to be booked. When the reservation concept is accepted

by the public as a common sense, different kinds of effective booking systems are

brought to give an open and fair reservation schema.

In general, the administrator sets up the available tickets while users can select by needs.

The given input data are then delivered as requests. Then the arrangement could be

made manually and automatically. The users are notified with the result. Due to the

variety of user needs, booking systems have different kinds of workflow and techniques.

Because of the complexity of booking rules, the paper-based booking system is still

widely used to make reservations. As the name suggests, the paper-based system takes

the booking records on the paper, while online booking uses digital management and

storage. A shared document booking mode is the simplest way to replace the paper

usage. A central reservation system is more intelligent as it provides various

functionalities. The design concept of calendar booking has gained its popularity as

many booking systems have a dynamic calendar reservation component.

2.1.2 Existing booking system analysis

2.1.2.1 Scientific systems

Research and scientific facilities, both in academia and industry, provide researchers

with available resources to conduct scientific research work. Due to the diversity of

experimental equipment, the usage of instruments is limited by complexity and lack of

communication between different laboratories, as well as the strict rules of experiments

and opening hours. Therefore, booking systems are designed accordingly to help

maximize the utilization of instruments. With the limitation of resources and the

growing reliance on the Internet, opening an online management tool would maximize

the utilization of laboratories, varying from online website to a mobile application (W.

et al, 2012).

Shared remote online laboratory resources are a new hot issue raised by the

development of distance education. The virtual experiments bring traditional on-

campus experiments with challenges. For the input data, the estimation of time is still

requested. However, the unique scheduling system and user performance should be

taken into consideration while the institution boundaries are broken (Li, Esche &

Chassapis, 2008). The synchronization of request and priority schema shall customize

into online reservation protocol, for example, the live-class experiments have higher

priority than undergraduate student tutorial test (Li, Esche & Chassapis, 2008). Some

applications have already been used and reported to the public. For examples, one

online laboratory uses one central system to support all online requests (De Vora, Auer

& Grout, 2007). A Moodle extension management tool with immediate application

takes user booking to access the MARVEL labs (Ferreira & Cardoso, 2005)

The public service reservation is different from others because of the greater number of

users. Due to the diversity of user backgrounds and urgent needs to access the same

resource, a booking system provides an efficient and highly simplified reservation

process. The designs of user interfaces, input data and charges criteria need to cater to

customer psychology and the user behaviour patterns (Teuber,C. & Forbrig P., 2004).

The synchronization requests problem should be properly handled. For example,

iTelescope.net offers over 10,000 users with an Internet-connected telescopes network

to conduct observation1. A dynamic calendar reservation is used to show available time

slots, discounts and other relevant information and manage reservation through

dragging and click. The limited full-dark period, illumination and experiment plan give

this booking system special characteristics.

2.1.2.2 Non-scientific booking systems

The booking systems play an essential role in our daily life, as we use them everywhere

and all the time, such as the hotel booking, airline booking, restaurant booking,etc. The

hotel industry has gone through a dramatic change over the last decades as the internet

takes over the traditional communication (McTavish & Sankaranarayanan, 2010).

Instead of calling and investigating yellow pages in advance, a comprehensive agent-

based booking system has gained in popularity in recent years, such as booking.com,

Airbnb.com, Hotels.com. An agent is an internal system, gathering information from

its environment to chase its goal (McTavish & Sankaranarayanan, 2010). The hotel

booking agents gather the hotel information as much as possible - location, prices, type

of facilities, host information and rates, synchronize all the booking data and return the

outcome through interacting with different service agents and resources. Unlike the

1 http://www.itelescope.net/reservatio

scientific systems, it allows the user to book with just basic details, which is also

included by other universal booking systems. Hotel booking systems also pay more

attention to the accuracy of search results, as the search algorithms are more intelligent

and goal-oriented than simple search (McTavish & Sankaranarayanan, 2010).

Nowadays, the airline booking has similar circumstance as hotel booking with an agent-

based booking system. While the airline has its different attentions, it concerns mostly

the seat occupancy (Knight, 1972). To make full use of available space, the booking

requests the details from users to prepare the flights because of load factors and to

arrange seats exhaustively for the disabled people and emergency safety issues (Knight,

1972). Airline booking systems also need an adequate searching algorithm and essential

internal database manipulation to give a reasonable solution with minimum input data.

Meanwhile, the involved authentication logic, accuracy of results, stability and

reliability have higher requirements than other booking systems.

2.2 The school of Chemistry at University of St Andrews

The school of Chemistry at University of St Andrews offers more than 20 different

kinds of facilities2 to the researchers, including the Powder X-Ray Diffraction, Single

Crystal X-ray diffraction, Solid-state NMR spectroscopy, Mass Spectrometry, etc. As

part of EaStCHEM and ScotCHEM, it also allows academic and industrial users to

access facilities. There are 6 different diffractometers serving around 100 users for

Powder X-Ray Diffraction3 – two PANalytical Empyrean with Cu X-ray tube (JOHN

& PAUL), two Stoe Stadi p with Cu X-ray tube (GEORGE & RINGO), one PANalytical

Empyrean with Mo X-ray tube (PETE) and one MINIFLEX 600. There are four

different systems4 to carry out the chemical crystallography search - STANDARD

system, Rigaku Cu MM007 HF (dual port) high brilliance generator, Rigaku FRX (dual

port) high brilliance generator and Rigaku SCX Mini. The 400 MHz HFXY and 600

MHz Bruker Avance III spectrometers explore the research on the NMR spectroscopy

in solid state5. The school also runs two mass spectrometers6 to conduct chemical and

biomedical sciences research.

2 https://www.st-andrews.ac.uk/chemistry/research/services/

3 http://chemistry.st-andrews.ac.uk/pxrd/index.html

4 https://www.st-andrews.ac.uk/chemistry/research/services/

5 https://ssnmr.wp.st-andrews.ac.uk/available-equipment/

6 http://mass-spec.wp.st-andrews.ac.uk/services/

Chapter 3 Methodology and Infrastructure

3.1 Requirements engineering

‘Requirements’ are the conditions or capabilities which a system or system component

needs to satisfy (Jalote, 2005). In other words, it explains what the system should do

and how the system should be implemented. The specifications of actions are classified

as the functional requirements, while the system properties are treated as the non-

functional requirements. The requirement engineering process refers to the elicitation,

analysis, specification, validation and management of gathered requirements

(Sommerville, 2016). The quality of software products mainly depends on the quality

of the requirement engineering process (Pandey, Suman and Ramani, 2010). Therefore,

it is vital to apply requirement engineering in every phase of development from

different viewpoints and objectives (Pandey, Suman and Ramani, 2010).

In this project, the requirement engineering was carried out iteratively with

consideration of technical, operational, legal and schedule feasibility. At the first

meeting, the client (Dr Yuri Andreev) proposed the basic functionalities (see Appendix

B). To achieve the reusability of software, the requirements from three other

departments (Mass Spectrometry, Solid-State NMR, X-Ray Crystallography) were also

gathered through meeting. Then the requirements were identified and documented by

the researcher. The requirement verification and validation activities were carried under

the supervision of the client and supervisors. At different stages of the software

development life cycle, requirements were adjusted accordingly.

3.2 Iterative development

From Chapter 1 and 3.2, the project background and time limitation determines a rapid

system development and process. Agile software development is an incremental

software development method, which could produce software and satisfy stakeholders

faster than the conventional waterfall process for business systems (Sommerville, 2016).

The Agile method divides the software development process into several short periods

named sprints (see Figure 1). There were four sprints (every 2 weeks) in this project.

Each sprint started with the product backlog, given by the stakeholders and identified

as requirements by the developer. Then, the developer chose missions to complete. A

weekly meeting was held to discuss the progress and problems between advisors and

the developer. After the sprint review, the potentially releasable product was presented

to the stakeholders. Alpha testing took place on the development platform to test its

functionality by developer and client. Stakeholders gave suggestions and feedback from

different aspects of the latest product. At the last sprint, Beta testing gave the common

users an opportunity to voice their suggestions. A new sprint backlog was established

with unfinished mission and feedback. The new sprints start until completion of the

product backlog.

Figure 1 Agile methodology

3.3 Version Control

Rome wasn’t built in a day, neither is this project. To back up files and keep track of

different versions of programs, version control is a good solution to reduce unnecessary

losses. As an extension of NOMAD, version control also prevents clashes with other

components. To keep the consistency of sharing and synchronization strategy,

Mercurial7 was used as the distributed version control system, which is supported by

the School of Computer Science in St Andrews 8 . Based on NOMAD repository,

Mercurial provides the researcher a method to learn from its history of development by

tracking the changes of files. Mercurial supports recording date, difference and author,

reconstructing the previous state and branching to maintain different versions (Hinsen,

Läufer and Thiruvathukal, 2009).

During the program development stage, feature branches were generated to record

different numbered states and merged with success functions. One branch was

maintained to record the well-functioned version. One branch was used to store the

code even though there were a number of bugs and problems to be solved. One branch

7 http://mercurial.selenic.com
8 https://systems.wiki.cs.st-andrews.ac.uk/index.php/Mercurial_service

was created to place the trial with fullcalendar API, which were closed after this

approach was abandoned (see Figure 2). Regular commits and pushes recorded the

changesets, allowing the developer to update the local copy and allowing code

governance and peer review as well.

Figure 2 Changelog

3.4 JavaEE Architecture

JavaEE9 is abbreviation for Java Platform Enterprise Edition, also called J2EE. It

provides platform to develop enterprise software with high scalability, flexibility and

accessibility. To avoid the shortcomings of two-tier (client/server) architecture, JavaEE

adopts multitier strategy: Client tier, Web tier, Business logic tier and Enterprise

information system tier. Java Servlet and Java Server Pages (JSP) are components from

Web tier to support interactive browse, data modification and dynamic web content

generation.

Observer (Listeners): When loading a web application, the web.xml (configuration file)

loads ServletContext, context-param, listener, filter and servlet in sequence.The listener

acts like an observer to listen to the application and trigger a response action. There are

8 different listeners which could be categorized into 3 different types by its object. For

example, HttpSessionListener stores and destroys session events while

HttpSessionAttributListener manages (includes adding, replacing and removing) the

session attributes. HttpSessionActivationListener helps recover session information

when the server restarts.

Front Controller (Servlet Filters): A servlet filter plays the role of intercepting the

HttpServletRequest and HttpServletResponse objects and even modifying their heading

and data. When the user sends requests or relevant URL, the servlet filter calls the

doFilter () function first, in which the filter can execute specific codes or give

9 http://www.oracle.com/technetwork/java/javaee/overview/index.html

permission to access requested resources. The filter-mapping maps with one or multiple

Servlet or JSP to compress response time and filter sensitive vocabulary.

Façade Pattern (Meta Management and Configuration): In object-oriented architecture,

façade is one of the most popular design patterns to drop coupling of code. The essence

of the façade pattern is to isolate the subsystems from the client with a middle class.

Façade knows functionalities of one or more subsystems, which are a set of classes. It

takes requests from the client and appoints them into different subsystems. It provides

a simplified Meta management method instead of creating new functions. Façade

pattern slashes the complexity of subsystems and improves their independence.

Application Server (Apache Tomcat): The web server handles all HTTP (hypertext

transfer protocol) requests, while the application server holds business logic. Apache is

a web server and Tomcat 10 is a light application server to support Servlet/JSP.

Developers used to combine Apache and Tomcat together to support their website.

Apache takes HTTP requests from the client and then transfers requests from Servlet

and JSP to Tomcat. After Tomcat finishes processing, it sends responses back to

Apache, which finally send them to the client.

Apache Maven: Apache Maven11 is a tool to easily manage and build projects. The

pom.xml file is the kernel, which includes the dependencies, plugins, project version

and other configuration information. During the build lifecycle, the validation,

compilation, testing, packaging, integration-testing, verification, installation and

deployment are conducted automatically phase by phase.

3.5 Project Management

3.5.1 Requirements Management

After clarifying the objectives, the development process was divided into 4 sprints, with

each assigned a number of requirements. Before each sprint began, the advisors and

developer outlined plans together. The sprint backlogs were updated on Trello (a project

management tool) during the sprint. It visualized the information with cards labelled

‘to-do’, ‘doing’, ‘under-view’ and ‘done’. Through the whole sprint, cards were added

or edited by the developer or advisors. The specific details were determined by the

estimated time and size of the task.

10 http://tomcat.apache.org/
11 http://maven.apache.org/

3.5.2 Collaboration

To cooperate with the NOMAD team, Kallithea was used to do the code governance

and peer review. It provides the files, branches and other version control histories. It

allows the other team member to review and leave comments. Meanwhile, team

communications are maintained through Slack, where NOMAD team members and

clients could receive instant messages.

There are substantial collaborations throughout the project:

 Tom Kelsey gave suggestion on project management and supervised the project

progress.

 Shyam Reyal helped organize the meeting with clients and gave advices on any

problems during design, implement and report writing phases.

 Simone Conte also gave technical governance and participated in the system

design, implement and report.

 NOMAD team acts as technical consultant.

 Dr Yuri Andreev and PXRD users tested system and shared their feedback.

Chapter 4 Requirement

The requirements in this chapter are mainly taken from the meeting with clients,

including Dr Yuri Andreev (PXRD), Prof Alexandra Slawin (X-Ray diffraction), Dr

Daniel McLean Dawson (Solid State NMR), Mrs. Caroline Horsburgh and Mrs. Sally

Lorna Shirran (Mass Spectrometry). Most of the requirements were enumerated after

the meeting through the discussion with the project supervisor Tom Kelsey and the PhD

student supervisors Shyam Reyal and Simone Ivan Conte, who helped with the

understanding of the system.

An initial list of potential clients was generated from the Chemistry school website and

Prof David O’Hagan (Head of the School of Chemistry) gave the contact details of

selected members from the list. The eventual four groups were chosen as the focus

group because of their written reservation systems and needs. In order to apply the e-

working booking system and NOMAD, the booking process and data retrieval process

were questioned. Before each meeting, the interviewees were informed of the aim of

interview. Through the meeting, the stakeholders declared their requirements and

elaborated their current booking procedure with real cases. Then they were asked about

the further details, urgency of a full-functional system and economic benefit. As the

PXRD is the initial client group, the main requirements are generated for it. Moreover,

the requirements for other three technique departments are listed by the order of

workflow. At the end, the adaptability and changes of design are summarized in the

comparison of requirements.

4.1 Universal requirements

The main purpose of having a scientific data management system is to organize the

scientific life efficiently and to make data trackable and searchable. In general, for a

functional booking system, it must meet the following requirements:

 The user shall be able to submit and upload relevant booking details.

 The user shall be able to make an appointment.

 The user shall be able to retrieve their booking history.

 The user shall be able to cancel these bookings following the regulation.

 The user (administrator) shall be able to manage data.

 System shall be available and accessible.

4.2 Powder X-Ray Diffraction (PXRD)

The first meeting was on the 15th of May, 2017 at the chemistry Purdie building, St

Andrews. At the meeting, the client (Dr Yuri Andreev) demonstrated the instruments

and current workflow at the PXRD lab. Then he explained stipulations and management

demands for each type of booking exhaustively. The initial requirement paper and

reservation form can be found in Appendix B. At the second meeting he gave feedback

and suggestions about the user interface design and the requirements were changed

accordingly. From the following demo and initial presentation meeting, the stakeholder

considered the practicality of the system and the functional and non-functional

requirements were adjusted. The stakeholders and developer contact continuously and

promptly during the whole process. The precise functional and non-functional

requirements are addressed at 5.2.1 and 5.2.2.

4.2.1 Functional requirements

The finalized functional requirements are divided by different booking mode aspects.

The general requirements demonstrate the basic usage of the system. The Asset-

booking, Calendar and One-button functional requirements specify the corresponding

requests made by user and system. As the administrators are expected to understand the

booking rule and manage system, the common functionality were reorganized with

other management requirements deliberately.

4.2.1.1 General requirements

ID Requirement Importance

1 The user shall be able to log in with university credentials. High

2 The user shall be able to book three different types of

diffractometers: One-button booking (MINIFLEX), Calendar

booking (George & Ringo) and Asset-booking (John & Paul).

High

3 The user shall be able to find their booking history for three

different types of diffractometers.

High

4 The user shall be able to cancel his/her own booking within valid

time.

High

5 The user shall be able to find his/her own current day booking

agenda.

Medium

6 The user shall be able to log off the system. High

The table lists the basic functionalities from daily usage with which online system could

replace all operation from written reservation form.

4.2.1.2 Asset-booking functional requirements

ID Requirement Importance

7 The user shall be able to make a reservation with duration, range,

holder and film details for next 2 working days.

High

8 The user shall not be able to book the experiment on the current

day after a fixed time.

High

9 The user shall be able to choose to add protective film. High

10 The user shall be able to see the booking history from last 7 days. Medium

11 The user shall be able to cancel booking before the fixed time. High

12 The user shall not be able to book when daily booking times have

reached a maximum number of daily personal booking times.

High

13 The user shall not be able to book when selected diffractometer

has reached maximum running hours (Monday to Thursday).

High

14 The user shall not be able to book when selected diffractometer

has reached its Friday maximum running hour.

High

15 The user shall not be able to book when the total number of booked

discs has reached its maximum on the selected date.

High

16 The system shall be able to record booking with user identity and

selected details.

High

17 The system shall be able to provide the range choices by machine

from archived program.

High

18 When the range is selected, the system shall be able to provide

available duration from the existing combination

Medium

19 The system shall not be able to provide user with booked disc

holder in the same day.

High

20 The system shall be able to show the success prompt window. Medium

21 The system shall be able to show the failure prompt window when

the operation violates the booking rule.

Medium

The table shows all requested functionalities in detail, which are expected to operate on

the Asset-booking machine (John & Paul).

4.2.1.3 Calendar functional requirements

ID Requirement Importance

22 The user shall be able to book diffractometer by selecting from

available time slots for next 7 days.

High

23 The user shall not be able to select from past time. Medium

24 The user shall not be able to book when the number of personal

daytime bookings has reached its maximum.

High

25 The user shall not be able to book when the number of personal

weekly overnight bookings has reached its maximum.

High

26 The user shall be able to cancel their booking before the booked

start time.

High

27 The user shall be able to see all booking records with user name

and group name for next 7 days.

High

28 The system shall be able to record booking with user identity and

selected time slot.

High

29 The system shall be able to show the success prompt window. Medium

30 The system shall be able to show the failure prompt window when

the operation violates the booking rule.

Medium

The table declares all requested functionalities for Calendar-booking machine (George

& Ringo).

4.2.1.4 One-button functional requirements

ID Requirement Importance

31 The user shall be able to record experiment before using the

machine with the disc number and comments (optional).

High

32 The user shall not be able to book while the time since the last

booking is less than the specified machine running time.

High

33 The user shall be able to see his/her booking history. High

34 The system shall be able to record booking with user identity, time

and provided information.

High

35 The system shall be able to show the success prompt window. Medium

36 The system shall be able to show the failure prompt window when

the operation violates the booking rule.

Medium

The table concludes all necessary functionalities for MINIFLEX, One-button machine.

4.2.1.5 Admin functional requirements

ID Requirement Importance

37 The user shall be able to add new user. High

38 The user shall be able to edit the existing user. High

39 The user shall be able to inactivate/activate user. Medium

40 The user shall be able to see all the user information. High

41 The user shall be able to add new group. High

42 The user shall be able to edit the existing group. High

43 The user shall be able to inactivate/activate group. Medium

44 The user shall be able to delete group. High

45 The user shall be able to see all the group information. High

46 The user shall be able to see all the current day booking ordered

by the machine name and booking orders for asset-booking.

High

47 The user shall be able to see all the current day booking ordered

by the machine name and timeslot for calendar-booking.

High

48 The user shall be able to add all three types of booking with

username details under no restriction.

High

49 The user shall be able to cancel all three types of booking. High

50 The user shall be able to choose all the holders. High

51 The user shall be able to add new machines for all three types of

booking.

High

52 The user shall be able to change the existing machine details and

settings for all three types of booking.

High

53 The user shall be able to inactivate/active machine for all three

type of booking.

High

54 The user shall be able to add new program for asset-booking

diffractometer.

High

55 The user shall be able to change the existing program. High

56 The user shall be able to add new holder for asset-booking

diffractometer

High

57 The user shall be able to edit the existing holder. High

58 The user shall be able to get the report of number of runs and hours

for each group by machines during selected time period.

High

59 The user shall be able to edit the timeslot. Medium

60 The user shall be able to get the report of number of bookings and

overnight bookings for each group by machine during selected

time period.

High

61 The user shall be able to add the disc, used by one-button machine. High

62 The user shall be able to edit the disc details. High

63 The user shall be able to search the booking record by time stamp. Low

64 The user shall be able to get report of usage for each group during

the selected time period.

High

65 The system shall be able to provide existing groups to select when

editing user information.

High

66 The system shall be able to show the success prompt window. Medium

67 The system shall be able to show the failure prompt window when

the operation violates the booking rule.

Medium

The table summarizes the daily operation and maintenance needs for the admin.

4.2.2 Non-functional requirements

ID Requirement Importance

68 The system shall be robust to work. High

69 The system shall be accessible by desired users. High

70 The system shall protect the privacy of users. High

71 The system shall be user-friendly and easily understood by non-

computer background users.

High

72 The system shall be able to deliver the success/failure message. Medium

73 The system shall be available 99.999% of time. Medium

74 The system shall be maintainable and modifiable. High

75 The system shall be reusable to others Low

76 The system shall be developed to cohere with Hyper Text Markup

Language (HTML) guidelines and standards.

High

4.3 Mass Spectrometry (MS)

 Requirement I

The user shall present the corresponding sample form with formula, name and other

required information and samples through posting or in person.

 Requirement II

If the user is an undergraduate, the user shall submit their sample to their supervisor

with approval.

 Requirement III

The senior researcher shall arrange time and instruments according to their own

estimates after receiving the form and sample.

 Requirement IV

The senior researcher shall run the experiment and charge by the number of used

samples and instruments.

 Requirement V

The user shall get the printed result sheets from senior researcher.

4.4 Solid-State NMR (SS-NMR)

 Requirement I

The user shall book their experiment with username, machine name, expected time,

estimated duration at least 2 weeks in advance.

 Requirement II

The user and the administrator shall arrange the schedule considering priority and

constraints at the meeting.

 Requirement III

The user shall receive arrangement information from schedule form.

 Requirement IV

The user shall get extra time for next 2 week arrangements when the cancellation

for this week is made.

4.5 X-Ray Crystallography

 Requirement I

The user shall make appointment in paper with their samples to the experienced

academic. First come first serve.

 Requirement II

The experienced academic shall run the samples on the suitable machine.

 Requirement III

The experienced academic shall process results on the specific machine with the

raw data.

 Requirement IV

The user shall find their data through the email.

 Requirement V

Data shall be collected and stored in tapes/CD/DVD.

4.6 Comparison of requirements

Similarities:

 MS and PXRD need the count report as they charge for the survey.

 There is a need for both MS and NOMAD to track the process of experiment.

 PXRD and X-Ray Crystallography arrange running by the booking order. SS-

NMR and MS arrange only by the admin decision.

 SS-NMR users have to point out the timeslot as PXRD (Calendar-booking)

users do.

Differences:

 There is no fixed schedule for MS, where the estimated time and usage are based

on the senior researcher. The length of X-Ray Crystallography running is not

predictable, even by academics.

 For the MS, the required information should be relatively changeable.

 SS-NMR does not always charge, depending on the specific experiment, while the

X-Ray Crystallography does not charge at all at present.

 The desire of service from users is different. User books PXRD for next 2/7 working

days, while SS-NMR is booked for the next 2 weeks, X-Ray Crystallography

instruments are arranged immediately and the MS user expects the results before

the end of month.

 The running arrangement of MS is distinct from others that the arrangement of

running depends on the similarities and classifies of sample.

 The restriction of usage are different. For example, the holder of SS-NMR could be

used several times in a day or in a month. At the same time, the holder from PXRD

only could be used once a day. The main restriction of SS-NMR user is their

personal priority, while the restrictions of PXRD are mainly because of the machine

capability.

 The computer skills of technicians are not in the same level for these 4 groups

Chapter 5 Design

This chapter introduces the design of the PXRD booking system from different

perspectives, in order to carefully cover all functional and nonfunctional requirements.

The first section enumerates use cases with several use case specifications. The second

part and third part explain the database design and component design respectively. The

representative interface designs are included at the fourth part. At the end, the overall

design pattern and structure is briefly explained.

5.1 Use case diagram

The use case diagram graphically represents the communication between stakeholders

and systems by translating functional requirements to the use case. A use case embodies

a complete sequence of actions, while the whole set of use cases shows the entire

measurable values provided by system (Gemino, A., & Parker, D., 2009). Based on

functional requirements in Chapter 4.2.1, the user is the only stakeholder/actor in this

case. There are two types of users (Standard user and System admin) with different

access levels. The access level determines the functionality available to the user, so they

are showcased separately in Chapter 5.1.1 and Chapter 5.1.2. The listed use case

specifications are chosen as the representatives to explain the documented details of

each requirement as specified in Chapter 4.

5.1.1 Standard user

From Chapter 4.2.1, requirements are divided into use cases. Standard user is the actor

and all use cases are triggered by user. The identical use case for standard user and

admin have the same basic work flow. The alternative and exception flow describes the

following steps while scenarios are away from the main scenarios or choices lead to

divergent results.

 Figure 3 enumerates all use cases conducted by standard user, which are also

applied to admin user. Login use case is specified as the fundamental unit of all

use cases. “Add Asset” and “Cancel Asset” exemplify the “Book” and “Cancel”

procedures.

Figure 3 Standard user - use case diagram

Identifier 1

Name Log in

Description The user logs in with their university credentials

Actors User

Basic flows 1. User types in username.

2. User types in university email password.

3. User clicks login button.

4. System redirects to the page by the result.

Alternative and

exception flows

1. At 3, if user could not be found from approved user list,

the result returns as login page.

2. At 3, if user is not active account, the result returns as

login page.

3. At 3, if it is invalid password, the result returns as login

page.

Pre-conditions The user has been already added to the database.

Post-conditions 1. If the password is right, website page jumps to the

homepage. The login information of user is recorded to

the session attribute.

2. If the user password is not right, website page jumps to

the login web page with error information.

Table Use case "Log in" Specification

Identifier 3

Name Add asset booking

Description The user makes a reservation for usage of asset-machine

(John & Paul).

Actors User

Basic flows 1. User clicks the name of required machine

2. The website jumps to this machine’s booking page.

3. User selects one available date.

4. User selects one provided range.

5. User selects duration from stored choices.

6. User selects unoccupied holder.

7. User clicks Book button.

8. System gets machine restriction settings.

Alternative and

exception flows

1. At 4, if the needed range could not be found, the user

shall contact the administrator, who will add new

program to the machine.

2. At 5, if the needed duration could not be found, the user

shall contact the administrator, who will add new

program to the machine.

3. At 6, if the needed holder is occupied, user shall contact

the administrator or go back to 3, changing date.

4. At 6, if the user is administrator, all holders are available

to choose.

Pre-conditions The user has logged in to his/her account.

Post-conditions 1. If the booking followed booking rule, the new booking

will be added to database and web page will reload with

success information.

2. If the user is standard user and machine usage or personal

daily usage is out of limitation, the web page will reload

with fail alert

Table Use case "Add Asset booking" Specification

Identifier 5

Name Cancel asset booking

Description User cancels the selected booking record.

Actors User

Basic flows 1. User checks the booking records.

2. User clicks the cancel button.

Alternative and

exception flows

1. At 2, if user is administrator, records will be deleted

without restriction.

2. At 2, if user is standard user and current time is after the

allowed cancel time, records won’t be deleted.

3. At 2, if user is standard user and current time is before the

allowed cancel time, records will be deleted.

Pre-conditions The user has logged in to his/her account.

Post-conditions Records are updated according to the change and web page is

refreshed after operation. If cancellation is made, the success

alert will display. Otherwise, the failure alert will display.

Table Use case "Cancel Asset booking" Specification

5.1.2 Admin user

The biggest difference between administrators and standard users is the obligation. The

admin user maintains the correctness of the system and makes necessary adjustments.

The use cases are categorized by user behaviors and target booking types. First of all,

it shows the general management of the system. Then, it introduces use cases in the

order of Asset-related, Calendar-related and Onebutton-related.

 Administrative Behaviors

Figure 4 presents a diagram of system management functions. For example,

admin could activate/inactivate user account and add/update a new/existing user

to manage users. Add/update operation is specified step by step in the use case

specification.

Figure 4 Admin user- system management use case diagram

Identifier 18

Name Add/update user

Description Administrator adds new user with personal details.

Administrator edits existing user account details.

Actors User

Basic flows 1. User types in username, real name and email

information.

2. User selects associate group name from active group.

3. User sets up user type as system admin or standard user.

4. User sets up active/inactive attribute.

5. User clicks the save button.

Alternative and

exception flows

1. Before 1, user id is generated while user wants to add a

new user account.

2. Before 1, user clicks the edit button. Then all details are

displayed in every text field.

3. Before 1, user aborts save/update plan, while he/she

clicks the clear button, the text fields will be reset.

4. At 1, if there is an invalid input, the page will be

reloaded.

Pre-conditions The user has logged in him-/herself as an administrator

account.

Post-conditions 1. If changes are made, records will be updated according

to the change and web page is refreshed with the success

alert.

2. If exception or errors happened the webpage will be

displayed with the failure alert.

Table Use case "Add/update user" Specification

 Asset-related use cases:

Figure 5 contains all asset-related operations. In addition to the same Book and

Cancel actions, the control of relevant equipment and instruments need to be

substantiated in an intelligible way, for instance, add/update program.

Figure 5 Admin user- Asset-related use case diagram

Identifier 25

Name Add/update program

Description User adds new program with duration and range information

to the machine. User updates the existing program details.

Actors User

Basic flows 1. User types in the machine, range and duration

information.

2. User clicks save button.

Alternative and

exception flows

1. Before 1, program id is generated while user wants to

add a new program.

2. Before 1, user clicks the edit button. Then all details are

displayed in every text field.

3. Before 1, user aborts save/update plan, while he/she

clicks the clear button, the text fields will be reset.

4. At 1, if machine name does not exist in the system or

there is an invalid input, the page will be reloaded.

Pre-conditions The user has logged in him-/herself as an administrator

account.

Post-conditions 1. If changes are made, records will be updated according

to the change and web page is refreshed with the success

alert.

2. If exception or errors happened the webpage will be

displayed with the failure alert.

Table Use case "Add/update program" Specification

 Calendar-related use cases

Figure 6 presents all calendar-related performance. Similar to the asset-related,

manipulations of machine, time-slot and group report (exemplified with

specification) are required.

Figure 6 Admin user- Calendar-related use case diagram

Identifier 31

Name Get calendar group report

Description User gets calendar machine booking record in selected date

range.

Actors User

Basic flows 1. User selects start date from a standard calendar

selector.

2. User selects end date from a standard calendar selector.

3. User clicks search button.

4. Number of booked timeslots and booked overnight

timeslots for each machine are shown by group name

Alternative and

exception flows

1. At 4, if the group doesn’t have booking records during

selected period, it will disappear from report result.

Pre-conditions The user has logged in him-/herself as an administrator

account.

Post-conditions

Table Use case "Get calendar group report" Specification

 Onebutton-related use cases

The same as asset-related and calendar-related use cases, use case diagram and

specification table give concerned performances.

Figure 7 Admin user- Onebutton-related use case diagram

Identifier 33

Name Active/inactive one-button machine

Description User changes the availability of machine-activating the

inactive machines or inactivating the active machines

Actors User

Basic flows 1. User finds the target machine.

2. User clicks the inactive button.

Alternative and

exception flows

1. At 2, if the machine is currently inactive, user will click

the active button.

Pre-conditions 1. The machine exists in the database and has availability

attribute.

2. The user has logged in him-/herself as an administrator

account.

Post-conditions 1. Database will update availability of machine.

2. The inactive machine will disappear from side bar

menu, while the active machine will reappear to serve

user.

Table Use case "Active/inactive one-button machine" Specification

5.2 Database design

Based on the non-functional requirements and the large volume of data, a stable

database is an ideal choice for a maintainable, available and reusable system. Due to

the varied dimensionality of the data, database shall organize all data in a logical way

to allow user searching and updating data. Furthermore, the client (user) and server

shall be able to get useful information from database. NOMAD has 46 different tables

(see Figure 8) to support its service, where the blue area contains the additional PXRD

tables. The PXRD booking system adds its own tables and adapts the user, accesslevel

and pigroup tables to meet the requirements (see Figure 9).

The database applies to the following normalization:

1NF: database only has atomic values (Chen TX and Liu, SS and Meyer MD, 2007).

From Figures 8 and 9, there is no repetition between all underlying domains. For

example, each user record from the user table is equal to a person and each

calendar_booking record from calendar_booking table represents one booking history.

There is no extra id for one person or one booking.

2NF: database is 1NF and each table has its own identity as primary key, where all non-

key attribute depends on it (Chen TX and Liu, SS and Meyer MD, 2007). From Figure

8 and 9, it could be easily proved.

3NF: database is 2NF and there is no transitive relationship for non-key attributes (Chen

TX and Liu, SS and Meyer MD, 2007). For example, usedtime of onebutton_booking

records the machine running time. When a booking is made, the usedtime takes the

value of current timetaken attribute from pxrdonebutton_machine table searched by

machineid. While the timetaken attribute of each machine is changed, the usedtime

values of previous bookings are still the same. But the usedtime value of new bookings

will be different. Therefore, the usedtime value only depends on (booking) id.

Both Entity Relationship diagrams show the table columns, type, nullable and primary

key information. Meanwhile, the foreign keys are represented as dashed lines. The

asset_booking, calendar_booking and onebutton_booking tables store the booking

record with user identity, machine identity, time and their distinct information (e.g.

specified range, duration, holder and film). The NMR machines for NOMAD are

different from the PXRD machines, where nmrmachine table is not adaptable to the

PXRD. The pxrdasset_machine, pxrdcalendar_machine and

pxrdonebutton_machine tables are created with the diffractometer-related information.

Each table stores its unique parameters and availability as they have their own

restriction rules (e.g. dailybooking and overnightbooking are the maximum personal

daytime and overnight booking times of calendar machine respectively). The

asset_holder, asset_program, disc tables are designed to contain the disc holder and

program data. The calendar_timeslot table stores the start time and end time

information as timestamps for each supported time slot.

Figure 8 Whole database ER diagram

Figure 9 PXRD booking ER diagram

5.3 Component design

It is difficult to apply the requirements of stakeholders to component design, but UML

decreases the ambiguity of software processes to some extent (Mahmood, S. & Lai, R,

2009). Therefore, the component diagram (Figure 10) hereby shows the dependencies

between each component. In implementation view, a component represents a set of

implementations, which also takes the interfaces from other components (Booch, G.,

Jacobson, I., & Rumbaugh, J., 1999).

Nomad is a comparatively large system, where it is hard to discuss all detailed designs

of its component dependencies. While nmr-booking is the main component of the whole

project, we’ll introduce the design of interfaces and dependencies between nmr-booking

and the other components. Nmr-booking requires the login interface from nmr-common,

which also provides the needed UtilityMethods interface to get formal int, Boolean and

date from request. Nmr-booking uses the context initialize interfaces from nmr-service

and calendar event manager to get an event object. Nmr-message provides the send

email interface and nmr-user provides the delete group interface and other useful

servlets.

Figure 10 Component diagram

5.4 Interface design

During the requirement gathering process, it was not surprising to find that the

computer backgrounds of chemists are diverse. To eliminate misuse and reduce the

number of operations, a concise and clear interface is the principle of interface design.

As an external part of NOMAD system, the design style is similar to the original system.

Considering the acceptance of operation and functional needs, it is practical to reduce

the number of operations as much as possible. Referring to several familiar online

booking systems (e.g. www.cheapflights.co.uk, google calendar), the example interface

designs are as follows:

1. Asset booking interface: After the user selects the machine name from the side-bar

menu, the website redirects to the corresponding machine booking page (see Figure

11). The available booking date according to the booking rule could be chosen from

a drop-down list. The same applies to the duration, range and holder. The machine

name is populated when the page is loading. This reduces the loss caused by spelling

errors. The result list shows the booking records from the last seven days for

reference and deletion.

Figure 11 Asset booking interface

2. Calendar booking interface (Figure 12): The plus button and delete button are the

only two options for the user to use, both of which are single-click operation. The

plus button displays when the timeslots are still available. The user’s own bookings

are highlighted in red with the delete button to distinguish from others. All user

booking records are accessible to all the users. Admin users have all add buttons

and delete buttons for all the showed records. When the admin user clicks the plus

button, a pop-up window is opened to get user name for booking.

http://www.cheapflights.co.uk/

Figure 12 Calendar booking interface

3. Machine management interface (Figure 13): Taking the asset machine as an

example, machine management shall allow the user to check with all existing

machine settings. The active/inactive operation shall be done by single click

operation. When the user makes a change to the machine settings, the page

will reload with filled text fields after clicking corresponding edit button. The

clear button helps initialize all text fields.

Figure 13 Asset machine management interface

4. Group usage report interface (Figure 14): The side bar menu provides logged

user name, logout and all pages’ links. Group counts the times of booking and

total hours by group name during the selected time period. Report only

summarizes the group which has booking records instead of all groups.

Figure 14 Asset booking group report interface

5.5 Design pattern and structure

To design an interactive system, the Model/View/Controller design pattern is widely

used to separate interface from generated data (Leff, A., & Rayfield, J. T., 2001). Model

and Controller contain the business logic (Server), while View gives front end interface

(Client). JavaEE application model is a good solution to simplify the complexity of

development. As it has full support of standardization of Java Servlet API and JSP, the

developed web applications have high portability, maintainability and scalability.

Following the NOMAD architecture, the JSP/Servlet methods are adapted to

implement design by combining the strengths of MVC model and J2EE architecture.

JSP files generates all the front-end design, while servlet files provide server support.

Both files get information from the database using JDBC. In next chapter, the detailed

implementation algorithm and process are introduced with examples.

Chapter 6 Implementation

6.1 Introduction

In this chapter, we discuss the details about how the PXRD booking system was

implemented. The architecture, algorithms and alternative solution are discussed in the

order of implementation process. Because of the considerable quantity of implemented

methods, this section takes several typical algorithms, explained with pseudocode.

The program is version controlled through Mercurial when the progresses have been

made. Codes are uploaded at the Kallithea. The as436_testing_branch is used for

working version and

as436_trial_and_error branch is used to commit all gradual improvements, even with

errors and bugs. The repository can be found at the following address:

as436_testing_branch: http://projectvm03.cs.st-andrews.ac.uk/kallithea/NOMAD-2.0-

Development/NOMAD-HEAD/files/as436_testing_branch

as436_trial_and_error: http://projectvm03.cs.st-andrews.ac.uk/kallithea/NOMAD-2.0-

Development/NOMAD-HEAD/files/as436_trial_and_error

The in-service system can be found at: http://projectvm03.cs.st-

andrews.ac.uk/apps/pxrd. Users need to get proper authorizations to access. Only when

users are added to the system by administrator can they use systems.

6.2 Tools, languages and frameworks

6.2.1 UI layer

As an extended service from NOMAD, Intellij is used for the development of the front-

end. Bootstrap, HTML, JSTL, JavaScript (with JQuery), Expression language and

JAVA are the main languages used in the code.

http://projectvm03.cs.st-andrews.ac.uk/apps/pxrd
http://projectvm03.cs.st-andrews.ac.uk/apps/pxrd

Bootstrap12 is an open-source web framework to style the web page design, originally

named Twitter Blueprint. In this application, it gives the styling of buttons, navigation

menu bar, panel and other layouts. Bootstrap provides extensive HTML, CSS design,

as well as JQuery plugin. By importing bootstrap.min.js file into JSP pages, all relevant

plugin could be used directly.

JavaServer Pages Standard Tag Library (abbr. JSTL)13 is the JSP based tag library,

which is a component of JavaEE web application. It supports SQL and XML taglibs. It

retrieves data from SQL queries to the JSP pages. JSTL could be import as taglibs like

“ <%@ taglib uri="http://java.sun.com/jsp/jstl/..." %>”

Expression language (abbr. EL)14 started as part of JSTL to dynamically access to data

through embedding expression. It allows JSP to use sessionScope, param, paramValues,

header and other objects into expression.

6.2.2 Logic Layer

JAVA is one of the most common languages used to build an object-oriented enterprise

system. Its “write once, run anywhere” character appeals to 9 million developers

developing web applications. Considering the NOMAD architecture coherence and

modifiability, in this project, Java is chosen as the developing language for both back-

end and front-end.

6.2.3 Persistence Layer

Java Database Connectivity (abbr. JDBC)15 is a standard API to connect JAVA and

database. JDBC are capable to run cross-platform regardless of different databases,

realizing accessibility, availability and modifiability consequently. Connection,

PreparedStatement and ResultSet are the main methods to implement the most of

functional requirements in the servlet.

6.2.4 Tools

12 http://getbootstrap.com/

13 https://javaee.github.io/jstl-api/

14 http://docs.oracle.com/javaee/1.4/tutorial/doc/JSPIntro7.html#wp71019

15 http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

Component Name Purpose Version

Operating System Windows 7 and Linux Development

Environment

IDE Intellij IDEA Development 2017.1.3

x64

Application server Apache Tomcat Server support 8.5.15

Database Client MySQL Workbench Database support 6.3CE

Database Server MySQL (MariaDB)

Distributed version

control

Mercurial Version control 4.2

Code Review Platform Kallithea Peer review

Web browser Google Chrome,

Mozilla Firefox

Development

6.3 NOMAD adaptation

 Implementation of Login: A servlet filter intercepts requests to sniff sensitive

information. Then the request, including username and password, is sent to the

LoginServlet, where it compares the username and password from the database and

checks whether the group is active. JSP_pages (defined in nmr-service) are

redirected accordingly. Meanwhile, servlet listeners are created to listen to the

changes of session.

6.4 One-button booking

 Implementation of activate and inactivate machine:

There are two machine statuses: active (available) and inactive (unavailable). The

essence of changing machine status is to set to the opposite of current status.

Therefore, functions A = 1⊕A are used to reverse the value.

 Using PreparedStatement to pass input from request to the SQL statement:

SQL injection is one of the most common hacking methods. It attacks website by

malicious SQL statement, including an identical equation (1 = 1), OR condition,

updating/deleting SQL sentences and other embedded operations. The

PreparedStatement interface from java.sql is the effective protection to prevent

SQL injection. UtilityMethods from nmr-common provides methods to convert

string to associated type (int, Boolean, time and date). Then PreparedStatement

uses setInt(), setBoolean(), setTime(), setDate() and other methods to assign a value

to the SQL sentence. Meanwhile, it converts single quotes to the escape character

to avoid the cutoff string value. The PreparedStatement works more efficiently than

Statement as well.

 Using JavaScript to check the empty text field:

Before the request goes to the servlet, the check() function is called to check if

there is an empty input. If it exists, the page will return with a failure message

before the server connects to the database, which saves bandwidth and strain.

Saving unnecessary connection and invalid transfer, the website maintains a high

response speed in the server.

6.5 Calendar booking

 Implementation of add-button and delete-button: To minimize the operation steps,

the calendar booking interfaces are designed like a real calendar with dates and time

slot information (see Figure 15). Each div represents one calendar event object

(CalendarEvent class from nmr-service). The EventManager (nmr-service) gets

event details for each time slot. If there is an existing event from the database, the

calendar shows user name and group name. While the user id is the same as the

logged user, the delete-button allows the user to delete the booking by given

booking id. If there is no event for this div and time is still available to reserve, the

add-button allows the user to book the associated time slot with current user identity.

Figure 15 “add-button” and “delete-button”

 Algorithm: Assuming: A: User is admin user. B: Booking is mine (user) booking.

C: Column represents current day. D: Current time is before the start time. Pa is the no

add-button case, while Pa is add-button condition. Pd gives delete-button circumstance.

Pa̅ = �̅�𝐶�̅� Pa = �̅�C�̅� = A + 𝐶̅ + D

Pd = A + �̅�𝐵(𝐶̅ + 𝐷)

Alternative solution and comparison: 1) At initial implementation, the Fullcalendar

API is used to develop the relevant interface and servlet, providing drags, clicks

and other operations. After the first attempt, the timeslot could not be customized,

and it is not easy to add an event to the database. Figure 16 gives a weekly scheduler

example. 2) At the second implementation stage, a pop-up window is used to add

booking details. Changes made after the demo feedback are explained in the next

chapter.

Figure 16 Fullcalendar weekly scheduler

 Implementation of adding calendar booking: When the add-button is clicked, the

addBooking function is called with several values. The Javascript function first

checks whether it is admin to get username. Then by JQuery, the request is sent to

the servlet. JQuery is a common-use cross-browser JavaScript library, which

provides fast service and massive extendable plugin. JQuery helps to create a

reusable and modifiable system. The servlet logic is:

 Using alert to show messages: From the non-functional requirement in Chapter 4,

it is necessary to give feedback regardless of the success/failure of operation. At

servlet part, the redirect URL includes a success parameter to give the result.

Procedure ADDCALENDARBOOKING()

IF isAdmin THEN {

addBooking();

}

 ELSE IF isOvernight THEN {

IF lessThanOvernightLimitWithin14days THEN {

addBooking();

}

ELSE {

return fail;

}

}

ELSE {

IF lessThanDaytimeBookingLimit THEN {

addBooking();

}

 ELSE {

return fail;

}

}

End procedure

/*There should be less than Maximum allowed overnight times(for example, 1) from

last 7 days and next 7 days. If there were one overnight booking in next 7 days, it should

not allow to book as the frequency would be more than once in continuous 7 days. */

Procedure lessThanOvernightLimitWithin14days(machine A)

 int overnightLimit = A.overnightlimit;

 int count = 0;

 while (overnightRecordHasNext) {

 count += 1;

 }

 IF count < overnightLimit THEN {

 return true;

 }

 ELSE {

 return false;

 }

End procedure

Procedure lessThanDaytimeBookingLimit (machine A)

 int dayLimit = A.daylimit;

 int count = 0;

 while (dayRecordHasNext) {

 count += 1;

 }

 IF count < dayLimit THEN {

 return true;

 }

However, it is not possible for the user to understand information from URL.

Therefore, the success parameter is compared to get right alert (with JQuery) while

the page is loading (see Figure 17).

Figure 17 Alert

6.6 Asset-booking

 Implementation of available date:

The DatePicker class generates the date array for all possible situations to the jsp.

It gives results following the JSTL language, which allows the webpage to present

a drop-down selection (see Figure 18).

Procedure GETDATES ()

 Date [] =null;

 IF isSaturday THEN {

date [0] = Today + 2; date [1] = Today + 3;

 }

 ELSE IF isSunday THEN {

date [0] = Today + 1; date [1] = Today + 2;

 }

 ELSE IF isFriday THEN {

IF beforeCancelTime OR isAdmin THEN {

date [0] = Today; date [1] = Today + 3;

}

ELSE {

date [0] = Today + 3; date [1] = Today + 4;

}

}

ELSE {

IF beforeCancelTime OR isAdmin THEN {

date [0] = Today; date [1] = Today + 1;

}

ELSE {

date [0] = Today + 1; date [1] = Today + 2;

}

}

RETURN date;

End procedure

Procedure beforeCancelTime()

 Date now;

 Date cancelTime;

 IF now.getTime< cancelTime.getTime THEN {

 return true;

}

 IF now.getTime>=cancelTime.getTime THEN {

 return false;

 }

End Procedure

Figure 18 Date picker

Alternative solution and comparison: 1) The calendar picker is another feasible

solution, which only makes two days selectable and others unclickable (see Figure

19). However, in this case, there are only two days available, which does not meet

aesthetics with too many irrelevant items. 2) User manually types date in where

servlet judges whether it is allowed. In this case, the user could be frustrated to type

other information repeatedly, and might not know the available dates. The format

of text could also affect the booking result.

Figure 19 Date picker (calendar way)

 Implementation of selectable range, duration and holder:

The combinations of range and duration are stored at asset_program as optional

choices for each machine. Once the range is selected, the matched durations are

available to choose (see Figure 20). The same applies to the holder, according to

the requirement, only unoccupied holders are available to choose. The algorithm is

written in pseudocode.

Figure 20 Drop down selection

Alternative solution and comparison: User types range and other information in

text box, which user should be responsible for. Comparing to drop-down list,

manual input has higher probability of invalid input because of misspelling.

Meanwhile, it increases the risk of malicious intrusion, for example, SQL injection.

Procedure GETHOLDER()

 usedholder[], unoccupiedholder[] = null;

 usedholder = getUsedHolderByDate (date);

 FOR (int i = 0, i < sizeOfKnownHolder, i++){

 IF(holder[i] NOT IN usedholder) THEN unoccupiedholder[] +=

holder[i];

 }

 Return unoccupiedholder;

End procedure

Chapter 7 Evaluation

7.1 User testing and feedback

According to the iterative development principle, stakeholders provided their input and

feedback at interim demonstration sessions at different stages of the project.

Stakeholders include Dr Yuri Andreev and common PXRD users (as provided by Dr

Andreev with no personal details recorded). Dr Andreev is the manager of the PXRD

facility in St Andrews, and also the proposer of this project, referred to as “client” below.

At initial stage, client reviewed the interface designs to tune the proposed functionality

with the needs declared during interview. He explained the meaning of the table

headings ‘Range (2θ)’ and ‘Time’ from the manual booking sheet (Appendix B). The

ASCII program file for stored permutation of range and time was provided after the

demo, which was not included in the first requirement gathering meeting. The designs

of the personal counting report and histogram report were omitted from the perspective

of practical use.

At the prototype/demo/status section, the realized functionalities (calendar-related and

one-button related) were demonstrated to the client and supervisors. The add button and

delete button replaced the dialog box as suggested during demo. We were advised to

replace “Asset”, “Calendar” and “One-button” with machine names as the category

names are defined by the developer.

After the first version of the system was produced, visualization and operations were

introduced and questioned one by one. There were 20 new queries in total. Descriptive

vocabularies were recommended to make the system more understandable to the admin

user. The reports were more informative when they classified data more delineated by

timeslot type for calendar and by service time for asset. The overview of the current

day was brought up as a new functional requirement. The alternative dates available to

the user were shifted from the next 2 days to the next 2 working days.

After the refinement, the PXRD common users performed an unsupervised beta testing

of the system to measure the level of acceptance. Because of the nature of critical

feedback, the criticism of system is not accordance with the importance and privilege

of functionality. In the case of arising conflicts between a user expectation vs the clients

(Dr Andreev), the expectation of client prevailed, as his suggestions are more informed,

and tailored, with a better understanding of the system and vision for the future. At the

last feedback analysis meeting, the client was satisfied with the system design and

implementation. Detailed feedback can be found in next section.

7.2 Analysis of Feedback

To obtain feedback, an email was sent to all users in the chemical building by main

client Yuri Andreev, containing a link to the questionnaire (which can be found at:

https://standrews.eu.qualtrics.com/jfe/form/SV_ekZ8L634H3b6mP3). Candidates

information were added by Dr. Andreev in advance. The survey was carried out from

01/08/2017 to 10/08/2017. Out of 35 responses, there were 13 people evaluating the

usage of system and 9 people giving suggestions (Feedback report can be found in File

Report.pdf). 70% and 100% of users found it is easy to login and logout respectively.

81.82% and 100% of users could make and cancel reservations for John and Paul, while

100% and 100% users replied YES to two actions for George and Ringo. There was

only 1 user having difficulty to book MINIFLEX. The full feedback report can be found

in the appendix.

Requirements for standard users are not always the same as those for the main client.

Therefore, a feedback analysis meeting was held to discuss with the developer, client

(Dr Yuri Andreev) and supervisors (Tom Kelsey and Shyam Reyal). To identify the

future improvements, the user suggestions are listed below.

 User suggestions Main client analysis Suggestion/solution

1 “I really like the way you

have designed the bookings

on George and Ringo! It’s

quite simple to use.”

2 “'Cancel' button for

Miniflex”

“There is no need to

cancel MINIFLEX

booking”

No change needed.

3 “drop-down menu should

say ‘disc-mode’ ‘capillary-

mode’”

“not an appropriate

name, but acceptable”

The menu labels

would be replaced.

https://standrews.eu.qualtrics.com/jfe/form/SV_ekZ8L634H3b6mP3
https://standrews.eu.qualtrics.com/jfe/form/SV_ekZ8L634H3b6mP3

4 “Please add a small

comment box for Paul and

John, I would like to keep

track of my sample details.

This would be very helpful,

since currently there is no

way to keep track of which

sample is in which holder

other than writing it on a

piece of paper.”

“Don’t need the

comment for Paul and

John, as users should be

responsible for

themselves. They

should know what they

book for. ”

No change needed.

5 “It would be nice if it

recognizes that I am part of

PAW’s group and offers

PAW’s holders as the only

one I can select from.”

“Unfortunately, this is

not practical for several

reasons. Firstly, there

are, and will be more in

the future that have to be

shared. Secondly, there

are groups that are

“lighter” users and

temporary users from

other departments and

universities. They are

sharing holders with no

existing-group

assignment. And lastly,

I think that it is not that

difficult to pick an

appropriate holder from

an alphabetical drop-

down list.”

No change needed

6 “Time slots are wrong in the

capillary section”

 Discussed in

Chapter 9.

7 “I still open the old booking

system!!!” “Black

background not comfortable

for the eyes.”

 Personal cache and

browser issues.

No change needed.

Chapter 8 Conclusion and future work

8.1 Conclusion

This project featured an online booking system for the Powder X-ray Diffraction

service at the School of Chemistry, following standard software engineering

principles. It investigated different booking systems, NOMAD, Agile development,

requirements engineering, JavaEE architecture and software testing. The application

managed to meet all functional requirements which were documented in Chapter 4.

Designs from Chapter 5 were all implemented in the form of Chapter 6. It also gained

recognition of its functionality as stated in the feedback

The PXRD booking system allows the user to book experiments with all five PXRD

machines with embedded booking rules. The cancellation and review of booking

alleviate the burden on researchers. It helps administrators to digitize their management

work and raises the financial rewards.

This project doesn’t only give me the industrial experience, but also boosts my

confidence. It allows me to combine practice and the knowledge from my courses

(Software Engineering Principle and Practise, Object-Oriented Modelling, Design and

Programming, Computer Security and Critical Systems Engineering). I felt a great

sense of accomplishment when the system functioned properly after deployment and

when the client and users expressed their approval. I believe that the design,

development and maintenance of a live client project is the best way of understanding

software engineering at its best.

8.2 Critical appraisal and evaluation of objectives

The functional requirements from Chapter 4 are all satisfied under the design from

Chapter 5. It implicitly meets the non-functional requirements. The website has been

functioning properly from different web browsers and operating systems. The

objectives matrix shows the overall accomplishment of objectives (FA-Fully Achieved,

PA-Partly Achieved, NA-Not Achieved).

Objectives Status Statement

Primary objectives

1. General requirement gathering and

elicitation from multiple departments in

chemistry, including Powder X-Ray

diffraction

FA Finished during 15/05/2017 -

05/06/2017

2. The generic model design and

identification of differences between

different machineries

FA Finished during 15/05/2017 -

08/06/2017

3. Software implementation for calendar

and one-button booking modes in

PXRD

FA Finished during 13/06/2017 –

21/07/2017

4. Client’s and users’ evaluation of

PXRD booking system

FA Finished gradually in different

stages of development

Secondary Objectives

1. Software implementation for asset-

booking mode

FA Finished during 22/07/2017 –

31/07/2017

2. Adapting calendar and one-button

booking modes to other machineries

PA One-button applies to X-Ray

Crystallography and calendar

applies to Solid State NMR in

theory.

3. Evaluation of booking system for

other machineries

NA Could be finished with future real

cases.

Tertiary Objectives

1. UX/UI analysis and implementation FA Finished gradually in different

stages of development

2. Investigating booking machinery

using mobile message bots

NA Could be finished in the future

work

8.3 Known issues & Limitations

 Tomcat time zone problem:

Affected by Daylight Saving time, Tomcat is showing one hour different from

the real time. For example, the calendar timeslot and one-button records show

one hour later than the real timeslot (Figure 21).This is a problem with

configuration in the development server and would be automatically resolved

when the system is deployed in the IT services VM cluster.

Figure 21 Tomcat time zone problem

 Log in problem:

When the user enters their identity and password, the system has already logged

with userid in the Session. Instead of redirecting the home page, the login page

is reloaded again. After the second time, the homepage shows up. This problem

only happened once a day, which may be caused by the context path.

8.3 Future work

Based on the user experiences, secondary and tertiary objectives, there are some future

extensions, which could be improved by the NOMAD team.

 Sending email notifications

The admin should be able to send a mass notification to entire groups, or

department. After the final feedback meeting, the client brought up the new

requirements inspired by the NOMAD functionalities. With the time limitation

of this project, this function would be finished by the NOMAD team.

 Adapting Print Service API

The admin shall be able to print out the current day booking records for easy

reference and display. The instrument manager brought up the new requirement

because of his personal computer skills. The JAVA Print Service API could help

implement this function. The NOMAD team will on this requirement after

completion of this project.

 Applying to other techniques

With time restriction, it is not feasible to conduct the experiments on other

machineries/techniques with real cases. The methodology and requirements

have been infused into the project design. The system ought to be adaptable by

new techniques and if other developers were willing to attempt this, its

reusability would be enhanced.

 Investigating booking machinery using mobile message bots

With the rise of smartphones, mobile message bots would be a better choice

than just email notification. It also could combine the booking with a mobile

calendar reminder. By the requirement and revenue of the stakeholders, the

developer cannot investigate this further. But, if the system would be used on

large-scale enterprises in the future, this function would be an interesting

feature.

Bibliography

Booch, G. (1986). Object-oriented development. IEEE Transactions on Software

Engineering, SE-12(2), pp.211-221.

Booch, G., Jacobson, I., & Rumbaugh, J. (1999). The Unified Modeling Language

Reference Manual. https://doi.org/10.1017/CBO9781107415324.004

Chen, T., Liu, S., & Meyer, M. (2007). An introduction to functional independency in

relational database normalization. Proceedings of the 45th, 221–225.

https://doi.org/10.1145/1233341.1233381

De Vora, A., Auer, M. E., & Grout, I. (2007). A general framework and booking system

for online laboratories based on open source technologies. In Innovations in E-learning,

Instruction Technology, Assessment, and Engineering Education (pp. 45–49).

https://doi.org/10.1007/978-1-4020-6262-9_8

Ferreira, J. M. M., & Cardoso, A. M. (2005). A Moodle Extension to Book Online Labs.

International Journal of Online Engineering, 1(2), 1–7.

Gemino, A., & Parker, D. (2009). Use Case Diagrams in Support of Use Case Modeling:

Deriving Understanding from the Picture. Journal of Database Management, 20(1), 1–

24. https://doi.org/10.4018/jdm.2009010101

Hinsen, K., Läufer, K. and Thiruvathukal, G. (2009). Essential Tools: Version Control

Systems. Computing in Science & Engineering, 11(6), pp.84-91.

Jalote, P. (2005). An Integrated Approach to Software Engineering. 3rd ed. India:

Narosa Publishing House.

Knight, J. (1972). A case study: Airlines reservations systems. Proceedings of the IEEE,

60(11), pp.1423-1431.

Leff, A., & Rayfield, J. T. (2001). Web-application development using the

Model/View/Controller design pattern. Proceedings - 5th IEEE International Enterprise

Distributed Object Computing Conference, 2001–Janua(January), 118–127.

https://doi.org/10.1109/EDOC.2001.950428

Li, Y., Esche, S. K., & Chassapis, C. (2008). A scheduling system for shared online

laboratory resources. In Proceedings - Frontiers in Education Conference, FIE.

https://doi.org/10.1109/FIE.2008.4720253

Mahmood, S., & Lai, R. (2009). RE-UML: An extension to uml for specifying

https://doi.org/10.1145/1233341.1233381
https://doi.org/10.1007/978-1-4020-6262-9_8
https://doi.org/10.1109/EDOC.2001.950428
https://doi.org/10.1109/FIE.2008.4720253

component-based software system. Proceedings of the Australian Software Engineering

Conference, ASWEC, 220–228. https://doi.org/10.1109/ASWEC.2009.28

McTavish, C., & Sankaranarayanan, S. (2010). Intelligent agent based hotel search &

booking system. In 2010 IEEE International Conference on Electro/Information

Technology, EIT2010. https://doi.org/10.1109/EIT.2010.5612121

Pandey, D., Suman, U. and Ramani, A. (2010). An Effective Requirement Engineering

Process Model for Software Development and Requirements Management. 2010

International Conference on Advances in Recent Technologies in Communication and

Computing, pp.287-291.

Sommerville, I. (2016). Software engineering. 10th ed. Harlow: Pearson Education.

Teuber, C., & Forbrig, P. (2004). Different types of patterns for online-booking systems.

Proceedings of the 3rd Annual Conference on Task Models and Diagrams -

TAMODIA ’04, 91. https://doi.org/10.1145/1045446.1045464

W., F., S., D., T., G. and P., X. (2012). Design and realization of laboratory information

magement system based on J2ME-J2EE. 12(6), pp.24-27.

https://doi.org/10.1109/ASWEC.2009.28
https://doi.org/10.1109/EIT.2010.5612121
https://doi.org/10.1145/1045446.1045464

Appendix A – Ethics

Appendix B - Raw requirements from each service

 Asset machine booking sheet:

 Calendar machine booking sheet

 SS booking sheet:

 MS booking sheet:

